按提交时间
按主题分类
按作者
按机构
  • Reappraisal of the largest ctenochasmatid Moganopterus zhuiana L�et al., 2012

    分类: 生物学 >> 动物学 提交时间: 2022-01-19 合作期刊: 《古脊椎动物学报》

    摘要: Moganopterus zhuiana L�et al. 2012 was erected as a member of the Boreopteridae, which was questioned by different researchers shortly after the publication. Although the new assignment to the Ctenochasmatidae is widely accepted by pterosaur researchers, some characteristics still require a detailed description. Here, the holotype of this taxon is restudied, and some ambiguous characteristics are re-identified. The diagnosis of this taxon has been revised as the following: a large ctenochasmatid pterosaur, which can be distinguished from other members of this clade by a single autapomorphy: an elongated rod-like parietal crest that extends posterodorsally, forming an angle of about 15�with the ventral margin of the skull. This taxon can be further distinguished from other ctenochasmatids on the basis of the following combination of characteristics: straight occlusal surfaces of the upper and low jaws; presence of a low premaxillary crest confined anterior to the nasoantorbital fenestra; rostrum about two thirds of the skull length; nasoantorbital fenestra occupying slightly more than 20% of the skull length; about 100 slender teeth; and a mid-cervical length/width ratio of about 7. The wingspan of M. zhuiana has been re-estimated according to a simple regression equation for wingspan versus skull length in ctenochasmatids. It confirms that M. zhuiana, although smaller than previous thought, is still the largest known ctenochasmatid. When comparing the sizes of ctenochasmatids in the Jurassic and Cretaceous, ctenochasmatids showed a rough tendency to increase their sizes.

  • CD163+CD14+macrophages, a potential immune biomarker for malignant pleural effusion

    分类: 生物学 >> 生物物理学 >> 肿瘤学 提交时间: 2016-05-11

    摘要: Malignant pleural effusion (MPE) is a common complication caused by malignant diseases. However, subjectivity, poor sensitivity, and substantial false-negative rates of cytology assay hamper accurate MPE diagnosis. The aim of this study was to assess whether CD163+CD14+ tumor-associated macrophages (TAMs) could be used as a biomarker for enabling sensitive and specific MPE diagnosis. Pleural effusion samples and peripheral blood samples were collected from 50 MPE patients and 50 non-malignant pleural effusion (NMPE) patients, respectively. Flow cytometry was performed to analyze cell phenotypes, and RT-qPCR was used to detect cytokine expression in these monocytes and macrophages. A blinded validation study (n = 40) was subsequently performed to confirm the significance of CD163+CD14+ TAMs in MPE diagnosis. Student's t test, rank sum test, and receiver operating characteristic curve analysis were used for statistical analysis. Notably, CD163+CD14+ cell frequency in MPE was remarkably higher than that in NMPE (P < 0.001). In a blinded validation study, a sensitivity of 78.9 % and a specificity of 100 % were obtained with CD163+CD14+ TAMs as a MPE biomarker. In total (n = 140), by using a cutoff level of 3.65 %, CD163+CD14+ cells had a sensitivity of 81.2 % and a specificity of 100 % for MPE diagnosis. Notably, MPE diagnosis by estimating CD163+CD14+ cells in pleural effusion could be obtained one week earlier than that obtained by cytological examination. CD163+CD14+ macrophages could be potentially used as an immune diagnostic marker for MPE and has better assay sensitivity than that of cytological analysis.