Submitted Date
Subjects
Authors
Institution
  • Metabolic engineering for the production of plant isoquinoline alkaloids

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Abstract:

    Several plant isoquinoline alkaloids (PIAs) possess powerful pharmaceutical and biotechnological properties. Thus, PIA metabolism and its fascinating molecules, including morphine, colchicine and galanthamine, have attracted the attention of both the industry and researchers involved in plant science, biochemistry, chemical bioengineering and medicine. Currently, access and availability of high-value PIAs [commercialized (e.g. galanthamine) or not (e.g. narciclasine)] is limited by low concentration in nature, lack of cultivation or geographic access, seasonal production and risk of overharvesting wild plant species. Nevertheless, most commercial PIAs are still extracted from plant sources. Efforts to improve the production of PIA have largely been impaired by the lack of knowledge on PIA metabolism. With the development and integration of next-generation sequencing technologies, high-throughput proteomics and metabolomics analyses and bioinformatics, systems biology was used to unravel metabolic pathways allowing the use of metabolic engineering and synthetic biology approaches to increase production of valuable PIAs. Metabolic engineering provides opportunity to overcome issues related to restricted availability, diversification and productivity of plant alkaloids. Engineered plant, plant cells and microbial cell cultures can act as biofactories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a specific alkaloid. In this article, is presented an update on the production of PIA in engineered plant, plant cell cultures and heterologous micro-organisms.

  • Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Abstract:

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme.

  • Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Abstract:

    Molecular changes elicited by plants in response to fungal attack and how this affects plant–pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label-free proteomics and NMR-based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis-related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea–Foc interactions.

  • Peer Review Status:Awaiting Review

     Hits 3341  Downloads 1882  Comment
  • Expression of a constitutively active nitrate reductase variant in tobacco reduces tobacco‐specific nitrosamine accumulation in cured leaves and cigarette smoke

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Abstract:

    Burley tobaccos (Nicotiana tabacum) display a nitrogen-use-deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco-specific nitrosamines (TSNAs). Two TSNA species, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen-assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) dramatically decreased free nitrate levels in the leaves. Field-grown tobacco plants expressing this NR variant exhibited greatly reduced levels of TSNAs in both cured leaves and mainstream smoke of cigarettes made from these materials. Decreasing leaf nitrate levels via expression of a constitutively active NR enzyme represents an exceptionally promising means for reducing the production of NNN and NNK, two of the most well-documented animal carcinogens found in tobacco products.

  • Peer Review Status:Awaiting Review

     Hits 3096  Downloads 1672  Comment
  • Download

    Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Penghui Li Qiang Dong Shujun Ge Xianzhi He Jerome Verdier Dongqin Li Jian Zhao

    Abstract:

    MtPAR is a proanthocyanidin (PA) biosynthesis regulator; the mechanism underlying its promotion of PA biosynthesis is not fully understood. Here, we showed that MtPAR promotes PA production by a direct repression of biosynthesis of isoflavones, the major flavonoids in legume, and by redirecting immediate precursors, such as anthocyanidins, flux into PA pathway. Ectopic expression of MtPAR repressed isoflavonoid production by directly binding and suppressing isoflavone biosynthetic genes such as isoflavone synthase (IFS). Meanwhile, MtPAR up-regulated PA-specific genes and decreased the anthocyanin levels without altering the expression of anthocyanin biosynthetic genes. MtPAR may shift the anthocyanidin precursor flux from anthocyanin pathway to PA biosynthesis. MtPAR complemented PA-deficient phenotype of Arabidopsis tt2 mutant seeds, demonstrating their similar action on PA production. We showed the direct interactions between MtPAR, MtTT8 and MtWD40-1 proteins from Medicago truncatula and Glycine max, to form a ternary complex to trans-activate PA-specific ANR gene. Finally, MtPAR expression in alfalfa (Medicago sativa) hairy roots and whole plants only promoted the production of small amount of PAs, which was significantly enhanced by co-expression of MtPAR and MtLAP1. Transcriptomic and metabolite profiling showed an additive effect between MtPAR and MtLAP1 on the production of PAs, supporting that efficient PA production requires more anthocyanidin precursors. This study provides new insights into the role and mechanism of MtPAR in partitioning precursors from isoflavone and anthocyanin pathways into PA pathways for a specific promotion of PA production. Based on this, a strategy by combining MtPAR and MtLAP1 co-expression to effectively improve metabolic engineering performance of PA production in legume forage was developed.

    Peer Review Status:Awaiting Review

     Hits 3023  Downloads 1697  Comment
  • Download

    Improvement and transcriptome analysis of root architecture by overexpression of Fraxinus pennsylvanica DREB2A transcription factor in Robinia pseudoacacia L. ‘Idaho’

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Yu Xiu Arshad Iqbal Chen Zhu Guodong Wu Yanping Chang Na Li Yu Cao Wenbiao Zhang Huiming Zeng Shouyi Chen Huafang Wang

    Abstract:

    Transcription factors play a key role to enable plants to cope with abiotic stresses. DREB2 regulates the expression of several stress-inducible genes and constitutes major hubs in the water stress signalling webs. We cloned and characterized a novel gene encoding the FpDREB2A transcription factor from Fraxinus pennsylvanica, and a yeast activity assay confirmed its DRE binding and transcription activation. Overexpression of FpDREB2A in R. pseudoacacia showed enhanced resistance to drought stress. The transgenic plant survival rate was significantly higher than that of WT in soil drying and re-watering treatments. Transgenic lines showed a dramatic change in root architecture, and horizontal and vertical roots were found in transgenic plants compared to WT. The vertical roots penetrated in the field soil to more than 60 cm deep, while horizontal roots expanded within the top 20–30 cm of the soil. A physiological test demonstrated that chlorophyll contents were more gradually reduced and that soluble sugars and proline levels elevated more sharply but malondialdehyde level stayed the same (< 0.05). Plant hormone levels of abscisic acid and IAA were higher than that of WT, while gibberellins and zeatin riboside were found to be lower. The root transcriptomes were sequenced and annotated into 2011 differential expression genes (DEGs). The DEGs were categorized in 149 pathways and were found to be involved in plant hormone signalling, transcription factors, stimulus responses, phenylalanine, carbohydrate and other metabolic pathways. The modified pathways in plant hormone signalling are thought to be the main cause of greater horizontal and vertical root development, in particular.

    Peer Review Status:Awaiting Review

     Hits 3480  Downloads 1992  Comment
  • Download

    Agronomic nitrogen‐use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Jingguang Chen Yong Zhang Yawen Tan Min Zhang Longlong Zhu Guohua Xu Xiaorong Fan

    Abstract:

    The importance of the nitrate (inline image) transporter for yield and nitrogen-use efficiency (NUE) in rice was previously demonstrated using map-based cloning. In this study, we enhanced the expression of the OsNRT2.1 gene, which encodes a high-affinity inline image transporter, using a ubiquitin (Ubi) promoter and the inline image-inducible promoter of the OsNAR2.1 gene to drive OsNRT2.1 expression in transgenic rice plants. Transgenic lines expressing pUbi:OsNRT2.1 or pOsNAR2.1:OsNRT2.1 constructs exhibited the increased total biomass including yields of approximately 21% and 38% compared with wild-type (WT) plants. The agricultural NUE (ANUE) of the pUbi:OsNRT2.1 lines decreased to 83% of that of the WT plants, while the ANUE of the pOsNAR2.1:OsNRT2.1 lines increased to 128% of that of the WT plants. The dry matter transfer into grain decreased by 68% in the pUbi:OsNRT2.1 lines and increased by 46% in the pOsNAR2.1:OsNRT2.1 lines relative to the WT. The expression of OsNRT2.1 in shoot and grain showed that Ubi enhanced OsNRT2.1 expression by 7.5-fold averagely and OsNAR2.1 promoters increased by about 80% higher than the WT. Interestingly, we found that the OsNAR2.1 was expressed higher in all the organs of pUbi:OsNRT2.1 lines; however, for pOsNAR2.1:OsNRT2.1 lines, OsNAR2.1 expression was only increased in root, leaf sheaths and internodes. We show that increased expression of OsNRT2.1, especially driven by OsNAR2.1 promoter, can improve the yield and NUE in rice.

    Peer Review Status:Awaiting Review

     Hits 3445  Downloads 1846  Comment
  • Download

    Co‐expression of the protease furin in Nicotiana benthamiana leads to efficient processing of latent transforming growth factor‐β1 into a biologically active protein

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Ruud H. P. Wilbers Lotte B. Westerhof Debbie R. van Raaij Marloes van Adrichem Andreas D. Prakasa Jose L. Lozano-Torres Jaap Bakker Geert Smant Arjen Schots

    Abstract:

    Transforming growth factor beta (TGF-β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF-β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TGF-β3 has been produced in plants before using a chloroplast expression system. However, this strategy requires chemical refolding to obtain a biologically active protein. In this study, we investigated the possibility to transiently express active human TGF-β1 in Nicotiana benthamiana plants. We successfully expressed mature TGF-β1 in the absence of the latency-associated peptide (LAP) using different strategies, but the obtained proteins were inactive. Upon expression of LAP-TGF-β1, we were able to show that processing of the latent complex by a furin-like protease does not occur in planta. The use of a chitinase signal peptide enhanced the expression and secretion of LAP-TGF-β1, and co-expression of human furin enabled the proteolytic processing of latent TGF-β1. Engineering the plant post-translational machinery by co-expressing human furin also enhanced the accumulation of biologically active TGF-β1. This engineering step is quite remarkable, as furin requires multiple processing steps and correct localization within the secretory pathway to become active. Our data demonstrate that plants can be a suitable platform for the production of complex proteins that rely on specific proteolytic processing.

    Peer Review Status:Awaiting Review

     Hits 3680  Downloads 2123  Comment
  • Download

    Metabolic engineering of terpene biosynthesis in plants using a trichome‐specific transcription factor MsYABBY5 from spearmint (Mentha spicata)

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Qian Wang Vaishnavi Amarr Reddy Deepa Panicker Hui-Zhu Mao Nadimuthu Kumar Chakravarthy Rajan Prasanna Nori Venkatesh Nam-Hai Chua Rajani Sarojam

    Abstract:

    In many aromatic plants including spearmint (Mentha spicata), the sites of secondary metabolite production are tiny specialized structures called peltate glandular trichomes (PGT). Having high commercial values, these secondary metabolites are exploited largely as flavours, fragrances and pharmaceuticals. But, knowledge about transcription factors (TFs) that regulate secondary metabolism in PGT remains elusive. Understanding the role of TFs in secondary metabolism pathway will aid in metabolic engineering for increased yield of secondary metabolites and also the development of new production techniques for valuable metabolites. Here, we isolated and functionally characterized a novel MsYABBY5 gene that is preferentially expressed in PGT of spearmint. We generated transgenic plants in which MsYABBY5 was either overexpressed or silenced using RNA interference (RNAi). Analysis of the transgenic lines showed that the reduced expression of MsYABBY5 led to increased levels of terpenes and that overexpression decreased terpene levels. Additionally, ectopic expression of MsYABBY5 in Ocimum basilicum and Nicotiana sylvestris decreased secondary metabolite production in them, suggesting that the encoded transcription factor is probably a repressor of secondary metabolism.

    Peer Review Status:Awaiting Review

     Hits 3516  Downloads 1932  Comment
  • Download

    Small RNA and degradome deep sequencing reveals drought‐and tissue‐specific micrornas and their important roles in drought‐sensitive and drought‐tolerant tomato genotypes

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Bilgin Candar-Cakir Ercan Arican Baohong Zhang

    Abstract:

    Drought stress has adverse impacts on plant production and productivity. MicroRNAs (miRNAs) are one class of noncoding RNAs regulating gene expression post-transcriptionally. In this study, we employed small RNA and degradome sequencing to systematically investigate the tissue-specific miRNAs responsible to drought stress, which are understudied in tomato. For this purpose, root and upground tissues of two different drought-responsive tomato genotypes (Lycopersicon esculentum as sensitive and L. esculentum var. cerasiforme as tolerant) were subjected to stress with 5% polyethylene glycol for 7 days. A total of 699 conserved miRNAs belonging to 578 families were determined and 688 miRNAs were significantly differentially expressed between different treatments, tissues and genotypes. Using degradome sequencing, 44 target genes were identified associated with 36 miRNA families. Drought-related miRNAs and their targets were enriched functionally by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Totally, 53 miRNAs targeted 23 key drought stress- and tissue development-related genes, including DRP (dehydration-responsive protein), GTs (glycosyltransferases), ERF (ethylene responsive factor), PSII (photosystem II) protein, HD-ZIP (homeodomain-leucine zipper), MYB and NAC-domain transcription factors. miR160, miR165, miR166, miR171, miR398, miR408, miR827, miR9472, miR9476 and miR9552 were the key miRNAs functioning in regulation of these genes and involving in tomato response to drought stress. Additionally, plant hormone signal transduction pathway genes were differentially regulated by miR169, miR172, miR393, miR5641, miR5658 and miR7997 in both tissues of both sensitive and tolerant genotypes. These results provide new insight into the regulatory role of miRNAs in drought response with plant hormone signal transduction and drought-tolerant tomato breeding.

    Peer Review Status:Awaiting Review

     Hits 3373  Downloads 1852  Comment
  • Download

    Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Paloma Juarez Vikram Virdi Ann Depicker Diego Orzaez

    Abstract:

    Although plant expression systems used for production of therapeutic proteins have the advantage of being scalable at a low price, the downstream processing necessary to obtain pure therapeutic molecules is as expensive as for the traditional Chinese hamster ovary (CHO) platforms. However, when edible plant tissues (EPTs) are used, there is no need for exhaustive purification, because they can be delivered orally as partially purified formulations that are safe for consumption. This economic benefit is especially interesting when high doses of recombinant proteins are required throughout the treatment/prophylaxis period, as is the case for antibodies used for oral passive immunization (OPI). The secretory IgA (SIgA) antibodies, which are highly abundant in the digestive tract and mucosal secretions, and thus the first choice for OPI, have only been successfully produced in plant expression systems. Here, we cover most of the up-to-date examples of EPT-produced pharmaceuticals, including two examples of SIgA aimed at oral delivery. We describe the benefits and drawbacks of delivering partially purified formulations and discuss a number of practical considerations and criteria to take into account when using plant expression systems, such as subcellular targeting, protein degradation, glycosylation patterns and downstream strategies, all crucial for improved yield, high quality and low cost of the final product.

    Peer Review Status:Awaiting Review

     Hits 1785  Downloads 780  Comment
  • Download

    Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Jun-Won Chwa Wook Jin Kim Sang Jun Sim Youngsoon Um Han Min Woo

    Abstract:

    Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2. However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals.

    Peer Review Status:Awaiting Review

     Hits 1701  Downloads 911  Comment
  • Download

    Production of highly bioactive resveratrol analogues pterostilbene and piceatannol in metabolically engineered grapevine cell cultures

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Ascensión Martínez-Márquez Jaime A. Morante-Carriel Karla Ramírez-Estrada Rosa M. Cusidó Javier Palazon Roque Bru-Martínez

    Abstract:

    Grapevine stilbenes, particularly trans-resveratrol, have a demonstrated pharmacological activity. Other natural stilbenes derived from resveratrol such as pterostilbene or piceatannol, display higher oral bioavailability and bioactivity than the parent compound, but are far less abundant in natural sources. Thus, to efficiently obtain these bioactive resveratrol derivatives, there is a need to develop new bioproduction systems. Grapevine cell cultures are able to produce large amounts of easily recoverable extracellular resveratrol when elicited with methylated cyclodextrins and methyl jasmonate. We devised this system as an interesting starting point of a metabolic engineering-based strategy to produce resveratrol derivatives using resveratrol-converting enzymes. Constitutive expression of either Vitis vinifera resveratrol O-methyltransferase (VvROMT) or human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) led to pterostilbene or piceatannol, respectively, after the engineered cell cultures were treated with the aforementioned elicitors. Functionality of both gene products was first assessed in planta by Nicotiana benthamiana agroinfiltration assays, in which tobacco cells transiently expressed stilbene synthase and VvROMT or HsCYP1B1. Grapevine cell cultures transformed with VvROMT produced pterostilbene, which was detected in both intra- and extracellular compartments, at a level of micrograms per litre. Grapevine cell cultures transformed with HsCYP1B1 produced about 20 mg/L culture of piceatannol, displaying a sevenfold increase in relation to wild-type cultures, and reaching an extracellular distribution of up to 45% of total production. The results obtained demonstrate the feasibility of this novel system for the bioproduction of natural and more bioactive resveratrol derivatives and suggest new ways for the improvement of production yields.

    Peer Review Status:Awaiting Review

     Hits 1779  Downloads 954  Comment
  • Download

    The dynamics of protein body formation in developing wheat grain

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-04

    Katie L. Moore Paola Tosi Richard Palmer Malcolm J. Hawkesford Chris R.M Grovenor Peter R. Shewry

    Abstract:

    Wheat is a major source of protein in the diets of humans and livestock but we know little about the mechanisms that determine the patterns of protein synthesis in the developing endosperm. We have used a combination of enrichment with 15N glutamine and NanoSIMS imaging to establish that the substrate required for protein synthesis is transported radially from its point of entrance in the endosperm cavity across the starchy endosperm tissues, before becoming concentrated in the cells immediately below the aleurone layer. This transport occurs continuously during grain development but may be slower in the later stages. Although older starchy endosperm cells tend to contain larger protein deposits formed by the fusion of small protein bodies, small highly enriched protein bodies may also be present in the same cells. This shows a continuous process of protein body initiation, in both older and younger starchy endosperm cells and in all regions of the tissue. Immunolabeling with specific antibodies shows that the patterns of enrichment are not related to the contents of gluten proteins in the protein bodies. In addition to providing new information on the dynamics of protein deposition, the study demonstrates the wider utility of NanoSIMS and isotope labelling for studying complex developmental processes in plant tissues.

    Peer Review Status:Awaiting Review

     Hits 1999  Downloads 987  Comment
  • Download

    Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-03

    Per Hofvander Till Ischebeck Helle Turesson Sandeep K. Kushwaha Ivo Feussner Anders S. Carlsson Mariette Andersson

    Abstract:

    Tuber and root crops virtually exclusively accumulate storage products in the form of carbohydrates. An exception is yellow nutsedge (Cyperus esculentus) in which tubers have the capacity to store starch and triacylglycerols (TAG) in roughly equal amounts. This suggests that a tuber crop can efficiently handle accumulation of energy dense oil. From a nutritional as well as economic aspect, it would be of interest to utilize the high yield capacity of tuber or root crops for oil accumulation similar to yellow nutsedge. The transcription factor WRINKLED1 from Arabidopsis thaliana, which in seed embryos induce fatty acid synthesis, has been shown to be a major factor for oil accumulation. WRINKLED1 was expressed in potato (Solanum tuberosum) tubers to explore whether this factor could impact tuber metabolism. This study shows that a WRINKLED1 transcription factor could induce triacylglycerol accumulation in tubers of transformed potato plants grown in field (up to 12 nmol TAG/mg dry weight, 1% of dry weight) together with a large increase in polar membrane lipids. The changes in metabolism further affected starch accumulation and composition concomitant with massive increases in sugar content.

    Peer Review Status:Awaiting Review

     Hits 1889  Downloads 967  Comment
  • Download

    The secretion of the bacterial phytase PHY‐US417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co‐growth

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-03

    Nibras Belgaroui Pierre Berthomieu Hatem Rouached Moez Hanin

    Abstract:

    Phytic acid (PA) is a major source of inorganic phosphate (Pi) in the soil; however, the plant lacks the capacity to utilize it for Pi nutrition and growth. Microbial phytases constitute a group of enzymes that are able to remobilize Pi from PA. Thus, the use of these phytases to increase the capacity of higher plants to remobilize Pi from PA is of agronomical interest. In the current study, we generate transgenic Arabidopsis lines (ePHY) overexpressing an extracellular form of the phytase PHY-US417 of Bacillus subtilis, which are characterized by high levels of secreted phytase activity. In the presence of PA as sole source of Pi, while the wild-type plants show hallmark of Pi deficiency phenotypes, including the induction of the expression of Pi starvation-induced genes (PSI, e.g. PHT1;4) and the inhibition of growth capacity, the ePHY overexpressing lines show a higher biomass production and no PSI induction. Interestingly, when co-cultured with ePHY overexpressors, wild-type Arabidopsis plants (or tobacco) show repression of the PSI genes, improvement of Pi content and increases in biomass production. In line with these results, mutants in the high-affinity Pi transporters, namely pht1;1 and pht1;1-1;4, both fail to accumulate Pi and to grow when co-cultured with ePHY overexpressors. Taken together, these data demonstrate the potential of secreted phytases in improving the Pi content and enhancing growth of not only the transgenic lines but also the neighbouring plants.

    Peer Review Status:Awaiting Review

     Hits 1265  Downloads 622  Comment
  • Download

    Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-03

    Anthony C. Bryan Sara Jawdy Lee Gunter Erica Gjersing Robert Sykes Maud A. W. Hinchee Kimberly A. Winkeler Cassandra M. Collins Nancy Engle Timothy J. Tschaplinski Xiaohan Yang Gerald A. Tuskan Wellington Muchero Jin-Gui Chen

    Abstract:

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.

    Peer Review Status:Awaiting Review

     Hits 1794  Downloads 818  Comment
  • Download

    Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.)

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-03

    Naty G. Ramírez Rivera Carolina García-Salinas Francisco J.L. Aragão Rocío Isabel Díaz de la Garza

    Abstract:

    Folate (vitamin B9) deficiency causes several health problems globally. However, folate biofortification of major staple crops is one alternative that can be used to improve vitamin intakes in populations at risk. We increased the folate levels in common bean by engineering the pteridine branch required for their biosynthesis. GTP cyclohydrolase I from Arabidopsis (AtGchI) was stably introduced into three common bean Pinto cultivars by particle bombardment. Seed-specific overexpression of AtGCHI caused significant increases of up to 150-fold in biosynthetic pteridines in the transformed lines. The pteridine boost enhanced folate levels in raw desiccated seeds by up to threefold (325 μg in a 100 g portion), which would represent 81% of the adult recommended daily allowance. Unexpectedly, the engineering also triggered a general increase in PABA levels, the other folate precursor. This was not observed in previous engineering studies and was probably caused by a feedforward mechanism that remains to be elucidated. Results from this work also show that common bean grains accumulate considerable amounts of oxidized pteridines that might represent products of folate degradation in desiccating seeds. Our study uncovers a probable different regulation of folate homoeostasis in these legume grains than that observed in other engineering works. Legumes are good sources of folates, and this work shows that they can be engineered to accumulate even greater amounts of folate that, when consumed, can improve folate status. Biofortification of common bean with folates and other micronutrients represents a promising strategy to improve the nutritional status of populations around the world.

    Peer Review Status:Awaiting Review

     Hits 1346  Downloads 642  Comment
  • Download

    Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4) led to andromonoecy in watermelon

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-03

    Gaojie Ji Jie Zhang Haiying Zhang Honghe Sun Guoyi Gong Jianting Shi Shouwei Tian Shaogui Guo Yi Ren Huolin Shen Junping Gao Yong Xu

    Abstract:

    Although it has been reported previously that ethylene plays a critical role in sex determination in cucurbit species, how the andromonoecy that carries both the male and hermaphroditic flowers is determined in watermelon is still unknown. Here we showed that the watermelon gene 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4), expressed specifically in carpel primordia, determines the andromonoecy in watermelon. Among four single nucleotide polymorphism (SNPs) and one InDel identified in the coding region of CitACS4, the C364W mutation located in the conserved box 6 was co-segregated with andromonoecy. Enzymatic analyses showed that the C364W mutation caused a reduced activity in CitACS4. We believe that the reduced CitACS4 activity may hamper the programmed cell death in stamen primordia, leading to the formation of hermaphroditic flowers.

    Peer Review Status:Awaiting Review

     Hits 1892  Downloads 913  Comment
  • Download

    Depletion of tyrosyl-DNA phosphodiesterase 1α (MtTdp1α) affects transposon expression in Medicago truncatula

    Subjects: Biology >> Botany >> Plant biochemistry, plant Biophysics submitted time 2016-05-03

    Maria Elisa Sabatini Mattia Donà Paola Leonetti Andrea Minio Massimo Delledonne Daniela Carbonera Massimo Confalonieri Giorgio Giraffa and Alma Balestrazzi

    Abstract:

    The role of plant tyrosyl-DNA phosphodiesterase 1α in genome stability is studied using a Medicago truncatula MtTdp1α-depleted line. Lack of MtTdp1α results in a 39% reduction of methylated cytosines as compared to control. RNA-Seq analyses revealed that 11 DNA transposons and 22 retrotransposons were differentially expressed in the Tdp1α-2a line. Among them all, DNA transposons (MuDR, hAT, DNA3-11_Mad) and seven retrotransposons (LTR (Long Terminal Repeat)/Gipsy, LTR/Copia, LTR and NonLTR/L1) were down-regulated, while the 15 retrotransposons were up-regulated. Results suggest that the occurrence of stress-responsive cis-elements as well as changes in the methylation pattern at the LTR promoters might be responsible for the enhanced retrotransposon transcription.

    Peer Review Status:Awaiting Review

     Hits 1906  Downloads 908  Comment
  • 12 尾页