您选择的条件: 衰老生物学
  • Dorsoventral patterning of the Xenopus eye involves differential temporal changes in the response of optic stalk and retinal progenitors to Hh signalling

    分类: 生物学 >> 生物物理学 >> 衰老生物学 提交时间: 2016-05-11

    摘要: Background: Hedgehog (Hh) signals are instrumental to the dorsoventral patterning of the vertebrate eye, promoting optic stalk and ventral retinal fates and repressing dorsal retinal identity. There has been limited analysis, however, of the critical window during which Hh molecules control eye polarity and of the temporal changes in the responsiveness of eye cells to these signals. Results: In this study, we used pharmacological and molecular tools to perform stage-specific manipulations of Hh signalling in the developing Xenopus eye. In gain-of-function experiments, most of the eye was sensitive to ventralization when the Hh pathway was activated starting from gastrula/neurula stages. During optic vesicle stages, the dorsal eye became resistant to Hh-dependent ventralization, but this pathway could partially upregulate optic stalk markers within the retina. In loss-of-function assays, inhibition of Hh signalling starting from neurula stages caused expansion of the dorsal retina at the expense of the ventral retina and the optic stalk, while the effects of Hh inhibition during optic vesicle stages were limited to the reduction of optic stalk size. Conclusions: Our results suggest the existence of two competence windows during which the Hh pathway differentially controls patterning of the eye region. In the first window, between the neural plate and the optic vesicle stages, Hh signalling exerts a global influence on eye dorsoventral polarity, contributing to the specification of optic stalk, ventral retina and dorsal retinal domains. In the second window, between optic vesicle and optic cup stages, this pathway plays a more limited role in the maintenance of the optic stalk domain. We speculate that this temporal regulation is important to coordinate dorsoventral patterning with morphogenesis and differentiation processes during eye development.

  • Epithelial microRNA-9a regulates dendrite growth through Fmi-Gq signaling in Drosophila sensory neurons

    分类: 生物学 >> 生物物理学 >> 衰老生物学 提交时间: 2016-05-05

    摘要: microRNA-9 (miR-9) is highly expressed in the nervous system across species and plays essential roles in neurogenesis and axon growth; however, little is known about the mechanisms that link miR-9 with dendrite growth. Using an in vivo model of Drosophila class I dendrite arborization (da) neurons, we show that miR-9a, a Drosophila homolog of mammalian miR-9, downregulates the cadherin protein Flamingo (Fmi) thereby attenuating dendrite development in a non-cell autonomous manner. In miR-9a knockout mutants, the dendrite length of a sensory neuron ddaE was significantly increased. Intriguingly, miR-9a is specifically expressed in epithelial cells but not in neurons, thus the expression of epithelial but not neuronal Fmi is greatly elevated in miR-9a mutants. In contrast, overexpression of Fmi in the neuron resulted in a reduction in dendrite growth, suggesting that neuronal Fmi plays a suppressive role in dendrite growth, and that increased epithelial Fmi might promote dendrite growth by competitively binding to neuronal Fmi. Fmi has been proposed as a G protein-coupled receptor (GPCR), we find that neuronal G protein Gq (Gq), but not Go, may function downstream of Fmi to negatively regulate dendrite growth. Taken together, our results reveal a novel function of miR-9a in dendrite morphogenesis. Moreover, we suggest that Gq might mediate the intercellular signal of Fmi in neurons to suppress dendrite growth. Our findings provide novel insights into the complex regulatory mechanisms of microRNAs in dendrite development, and further reveal the interplay between the different components of Fmi, functioning in cadherin adhesion and GPCR signalling. (c) 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 225-237, 2016