Current Location:home > Browse
Your conditions: 2019-06-20(2)

1. chinaXiv:201906.00044 [pdf]

Leaf gas exchange and photosynthesis curves of Elymus nutans and Potentilla anserina under fencing and grazing conditions in the Qilian Mountains, Northwest China

LIU Junjie; WANG Xiaoping
Subjects: Biology >> Botany

Potentilla anserina L. and Elymus nutans Griseb. are dominant species in the subalpine meadows of China. Grazing is one of the most important factors that influence community structure and productivity of subalpine meadows. Understanding how grazing changes photosynthetic capability is essential for preservation and restoration of grasslands. However, information about the effects of grazing on photosynthetic capability remains inadequate. Experiments were conducted in fencing and grazing areas in the Qilian Mountains, Northwest China. The leaf gas exchange and photosynthetic curves of P. anserina and E. nutans were measured at different growth stages. Results showed that grazing decreased the values of leaf gas exchange parameters, such as net photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration of P. anserina and E. nutans. In addition, grazing decreased the values of net photosynthetic rate-photosynthetically active radiation (PN-PAR) curve parameters, such as light-saturated net photosynthetic rate, apparent quantum efficiency, light compensation point, light saturation point, and dark respiration rate. Our results demonstrated that grazing was the primary limiting factor for photosynthesis of dominant grassland species in the study area.

submitted time 2019-06-20 From cooperative journals:《Journal of Arid Land》 Hits4892Downloads189 Comment 0

2. chinaXiv:201906.00043 [pdf]

Low soil temperature reducing the yield of drip irrigated rice in arid area by influencing anther development and pollination

Subjects: Biology >> Botany

Drip irrigation can produce high rice yields with significant water savings; therefore, it is widely used in arid area water-scarce northern China. However, high-frequency irrigation of drip irrigation with low temperature well water leads to low root zone temperature and significantly reduce the rice yield compared to normal temperature water irrigated rice, for example, reservoir water. The main purpose of this paper is to investigate the effects of low soil temperature on the yield reduction of drip irrigated rice in the spike differentiation stage. The experiment set the soil temperatures at 18°C, 24°C and 30°C under two irrigation methods (flood and drip irrigation), respectively. The results showed that, at the 30°C soil temperature, drip irrigation increased total root length by 53% but reduced root water conductivity by 9% compared with flood irrigation. Drip irrigation also increased leaf abscisic acid and proline concentrations by 13% and 5%, respectively. These results indicated that drip irrigated rice was under mild water stress. In the 18°C soil temperature, drip irrigation reduced hydraulic conductivity by 58%, leaf water potential by 40% and leaf net photosynthesis by 25% compared with flood irrigation. The starch concentration in male gametes was also 30% less in the drip irrigation treatment than in the flood irrigation treatment at soil temperature 18°C. Therefore, the main reason for the yield reduction of drip irrigated rice was that the low temperature aggravates the physiological drought of rice and leads to the decrease of starch content in male gametes and low pollination fertilization rate. Low temperature aggravates physiological water deficit in drip irrigated rice and leads to lower starch content in male gametes and low pollination fertilization rate, which is the main reason for the reduced yield of drip irrigated rice. Overall, the results indicated that the low soil temperatures aggravated the water stress that rice was under in the drip irrigated environment, causing declines both in the starch content of male gametes and in pollination rate. Low temperature will ultimately affect the rice yield under drip irrigation.

submitted time 2019-06-20 From cooperative journals:《Journal of Arid Land》 Hits4160Downloads159 Comment 0

  [1 Pages/ 2 Totals]