您选择的条件: 杨宇
  • 枯草芽孢杆菌对樱桃谷肉鸭生长性能、免疫器官指数、肠道菌群及肠道形态的影响

    分类: 生物学 >> 动物学 提交时间: 2018-12-24 合作期刊: 《动物营养学报》

    摘要: 本试验旨在研究枯草芽孢杆菌(Bacillus subtilis)对樱桃谷肉鸭生长性能、免疫器官指数、肠道菌群及肠道形态的影响。试验选取2周龄体重相近、健康的樱桃谷肉鸭600只,随机分为3组,每组4个重复,每个重复50只。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加2 g/kg枯草芽孢杆菌(BS组)和1 g/kg复合芽孢杆菌(CB组)。试验期为4周。结果表明:1)与对照组相比,BS组和CB组肉鸭第5周和第3~6周的平均日采食量均极显著降低(P<0.01),第5周的料重比显著降低(P0.05)。3)BS组和CB组肉鸭盲肠中菌落总数、芽孢杆菌数量均显著高于对照组(P<0.05),大肠杆菌数量显著低于对照组(P<0.05);BS组肉鸭盲肠中乳酸菌数量显著高于对照组(P<0.05)。4)BS组和CB组肉鸭十二指肠绒毛高度、黏膜厚度、绒毛高度/隐窝深度以及空肠黏膜厚度显著高于对照组(P<0.05),并且空肠隐窝深度显著低于对照组(P<0.05)。由此可见,饲粮中添加枯草芽孢杆菌可改善肠道形态,增加肠道内有益菌的数量以及刺激免疫器官的发育,促进肉鸭生长。

  • 枯草芽孢杆菌对樱桃谷肉鸭生长性能、免疫器官指数、肠道菌群及肠道形态的影响

    分类: 生物学 >> 动物学 提交时间: 2018-12-24 合作期刊: 《动物营养学报》

    摘要: 本试验旨在研究枯草芽孢杆菌(Bacillus subtilis)对樱桃谷肉鸭生长性能、免疫器官指数、肠道菌群及肠道形态的影响。试验选取2周龄体重相近、健康的樱桃谷肉鸭600只,随机分为3组,每组4个重复,每个重复50只。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加2 g/kg枯草芽孢杆菌(BS组)和1 g/kg复合芽孢杆菌(CB组)。试验期为4周。结果表明:1)与对照组相比,BS组和CB组肉鸭第5周和第3~6周的平均日采食量均极显著降低(P<0.01),第5周的料重比显著降低(P0.05)。3)BS组和CB组肉鸭盲肠中菌落总数、芽孢杆菌数量均显著高于对照组(P<0.05),大肠杆菌数量显著低于对照组(P<0.05);BS组肉鸭盲肠中乳酸菌数量显著高于对照组(P<0.05)。4)BS组和CB组肉鸭十二指肠绒毛高度、黏膜厚度、绒毛高度/隐窝深度以及空肠黏膜厚度显著高于对照组(P<0.05),并且空肠隐窝深度显著低于对照组(P<0.05)。由此可见,饲粮中添加枯草芽孢杆菌可改善肠道形态,增加肠道内有益菌的数量以及刺激免疫器官的发育,促进肉鸭生长。

  • 塑料的生物降解:关键问题及进展

    分类: 生物学 >> 生物工程 提交时间: 2017-09-20

    摘要: 2005 ~ 2017年间,世界塑料年产量从2.3亿吨增长到了4.0亿吨,预计到2050年,世界塑料年产量将达到34亿吨[1]。塑料消费产生的大量塑料废物,只有9%被回收利用,12% 被焚烧,79%被填埋或直接丢弃到环境中[2]。由于稳定的材料特性,塑料废物在自然条件下降解十分缓慢,预计到2050年,垃圾填埋场和自然环境中的塑料垃圾将达到120亿吨[2]。塑料垃圾在环境中的长期大量积累,给生态环境带来的严重污染和威胁,也成为一个全球性环境问题[3]。 随着一些塑料降解微生物或酶的发现,利用微生物或酶对塑料的降解作用,发展塑料污染的环境修复生物技术,已逐渐被意识到是一种解决塑料废物的新途径[4-6]。但是要实现塑料污染的高效生物降解和环境修复,有两大关键问题需要解决:1)塑料降解微生物或酶的来源。自19世纪40年代,塑料开始被人工合成并逐渐应用到生产生活之中,其出现历史不足80年。这么短的时间,被认为还不足以自然进化出广泛的塑料降解微生物或酶。探索自然界来源的塑料降解微生物和酶系统并加以利用,是开发塑料污染环境生物修复技术的重要基础性研究工作。2)塑料生物降解的速率。高分子长链的惰性化学结构单元、高分子链的大分子量和高分子链的聚集态结构等特征是阻碍影响微生物或酶降解塑料效率的重要因素。 针对这两个问题,作者开展了生物工程和高分子物理的交叉研究,取得了一些进展。1)揭示了昆虫及其肠道微生物是塑料分解微生物重要来源。从粮食害虫啮食塑料包装袋的自然现象受到启发,采用同位素示踪及多种物理化学分析技术,首次系统证实了黄粉虫能将PS长链分子解聚并分解为CO2;阐明了肠道微生物种群在塑料降解过程中起决定性作用。从黄粉虫和蜡虫肠道中分离出了降解聚苯乙烯(PS)、聚乙烯(PE)、聚氨酯(PUR)和聚对苯二甲酸乙二醇酯(PET)的细菌[4-5]。2)发现结晶高分子(如PE、PP和PET)的结晶度是影响生物分解速率的关键。微生物或酶在分解结晶高分子的过程中,优先分解高分子的无定形区,而对于结晶区分解十分缓慢,甚至不能分解[6]。结晶区的分子的堆砌形成的致密结构阻碍了酶残基对分子链的捕获。从高分子结晶热力学原理出发,提出一种不改变分子结构的基础上,实现结晶高分子向无定形的转变的去结晶化的方法,将结晶高分子的生物分解速率提高了100倍[7]。