• PGE2 Elevates IL-23 Production in Human Dendritic Cells via a cAMP Dependent Pathway

    分类: 生物学 >> 生物物理学 >> 细胞生物学 提交时间: 2016-05-12

    摘要: PGE2 elevates IL-23 production in mouse dendritic cells while inhibits IL-23 production in isolated human monocytes. Whether this differential effect of PGE2 on IL-23 production is cell-type-or species-specific has not been investigated in detail. The present study was designed to investigate the effect of PGE2 on IL-23 production in human DCs and the possible underlying mechanisms. Human monocytes derived dendritic cells (Mo-DCs) were pretreated with or without PGE2. Then the cells were incubated with zymosan. Our results demonstrated that PGE2 promoted zymosan-induced IL-23 production in a concentration dependent manner. In addition, it was found that PGE2 is also able to elevate MyD88-mediated IL-23 p19 promoter activity. More importantly, ELISA data demonstrated that db-cAMP, a cAMP analog, and forskolin, an adenylate cyclase activator, can mimic the effect of PGE2 on zymosan-induced IL-23 production, and rp-cAMP, a protein kinase A (PKA) inhibitor, can block the effect of PGE2. Moreover, PGE2 can increase zymosan-induced expression of the mRNA levels of both p19 and p40 subunits, which was mimicked by db-cAMP and forskolin. Our data suggest that PGE2 elevates the production of IL-23 in humanMo-DCs via a cAMP dependent pathway.

  • Transcriptome profiling of esophageal squamous cell carcinoma reveals a long noncoding RNA acting as a tumor suppressor

    分类: 生物学 >> 生物物理学 >> 肿瘤学 提交时间: 2016-05-11

    摘要: Esophageal Squamous Cell Carcinoma (ESCC) is among the most common malignant cancers worldwide. In the past, extensive efforts have been made to characterize the involvement of protein-coding genes in ESCC tumorigenesis but few for long noncoding RNAs (lncRNAs). To investigate the transcriptome profile and functional relevance of lncRNAs, we performed an integrative analysis of a customized combined lncRNA-mRNA microarray and RNA-seq data on ESCCs and matched normal tissues. We identified numerous lncRNAs that were differentially expressed between the normal and tumor tissues, termed "ESCC-associated lncRNAs (ESCALs)", of which, the majority displayed restricted expression pattern. Also, a subset of ESCALs appeared to be associated with ESCC patient survival. Gene set enrichment analysis (GSEA) further suggested that over half of the ESCALs were positively- or nelgativelyassociated with metastasis. Among these, we identified a novel nuclear-retained lncRNA, named Epist, which is generally highly expressed in esophagus, and which is down-regulated during ESCC progression. Epist over-expression and knockdown studies further suggest that Epist inhibits the metastasis, acting as a tumor suppressor in ESCC. Collectively, our analysis of the ESCC transcriptome identified the potential tumor suppressing lncRNA Epist, and provided a foundation for future efforts to identify functional lncRNAs for cancerous therapeutic targeting.