纤枝金丝桃化学成分研究

张涵，邓憬童，彭宇，韩庆迪，周献东，杨新洲†
（中南民族大学 药学院，武汉 430074）

摘 要: 为了探究滇产植物纤枝金丝桃的物质基础、寻找活性化合物，该文用80%乙醇对纤枝金丝桃地上部分浸渍提取，应用 HP-20 大孔吸附树脂、硅胶、葡聚糖凝胶、半制备高效液相色谱技术对纤枝金丝桃的化学成分进行分离纯化，根据波谱数据鉴定化合物的结构。结果表明: 从纤枝金丝桃中分离得到15个化合物，分别鉴定为 attenuatumione G (1)、uralodin B (2)、chipericumin C (3)、2,5-二羟基-1-甲氧基氧杂蒽酮 (4)、1,7-二羟基氧杂蒽酮 (5)、1,7-二羟基-4-甲氧基氧杂蒽酮 (6)、槲皮苷 (7)、芹菜素-7-O-β-D-葡萄糖苷 (8)、芹菜素-7-O-β-D-(6''-O-乙酰基)-葡萄糖苷 (9)、木犀草素 (10)、槲皮素 (11)、白桦脂酸 (12)、白桦脂酸甲酯 (13)、白桦脂酮酸 (14)、β-谷甾醇 (15)。化合物1-14首次从该植物中分离得到。采用MTT法对化合物1-14进行体外抗乳腺癌活性测试，结果仅显示化合物3、6、13对2种乳腺癌细胞株MCF-7和MDA-MB-231有一定的抑制作用，它们的IC_{50}值分别为48.6~123.5 μg·mL^{-1}。该研究结果对综合开发利用纤枝金丝桃资源具有理论和应用意义。

关键词: 金丝桃属, 纤枝金丝桃, 化学成分, 多环多异戊烯基间苯三酚, 细胞毒活性

中图分类号: Q946; R284.1
文献标识码: A

Chemical components of Hypericum lagarocladum

ZHANG Han, DENG Jingtong, PENG Yu, HAN Qingdi, ZHOU Xiandong, YANG Xinzhou*†
(School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China)

Abstract: The purpose of this paper was to study the material basis and the bioactive chemical components of Hypericum lagarocladum. The aerial part of this species was extracted with 80% ethanol, and then the crude extract was isolated and purified by HP-20 macroporous adsorption resin column chromatography (CC), silica gel CC, Sephadex LH-20 CC and semi-preparative HPLC. The structures of isolated compounds were deduced by the spectroscopic data, as well as comparison with the previous literature data. Fifteen compounds were purified from H. lagarocladum. They were identified as attenuatumione G (1), uralodin B (2), chipericumin C (3), 2,5-dihydroxy-1-methoxyxanthone(4),1,7-dihydroxyxanthone(5), 1,7-dihydroxy-4-methoxyxanthone (6), quercitrin (7), apigenin-7-O-β-D-glucopyranoside (8), apigenin-7-O-β-D-(6''-O-acetyl)-glucopyranoside (9), luteolin (10), quercetin (11), betulinic acid (12), betulinic acid methyl ester (13), betulonic acid (14), and β-sitosterol (15). Compounds 1-14 are isolated from H. lagarocladum for the first time. In vitro cytotoxic activity of compounds 1-14 were evaluated using MTT method against MCF-7 and MDA-MB-231 cell lines. And only compounds 3, 6 and 13 showed weak cytotoxic activity with IC_{50} values ranging from 48.6 to 123.5 μg·mL^{-1}. These
研究结果提供了H. lagarocladum的全面发展和应用的科学理论基础。

Key words: Hyperic, Hypericum lagarocladum, chemical components, PPAPs, cytotoxicity

藤黄科（Clusiaceae）金丝桃属（Hypericum）植物，大约有640种，中国有64种（33特有种）。该属在中国分布广泛，西南部最为丰富，而在新疆最为罕见（Li & Norman, 2007）。金丝桃属植物在国内外民间具有悠久的药用历史，如宣叶金丝桃（Hypericum perforatum）具有疏肝解郁、清热利湿、消肿通乳功效，用于肝气郁结、情志不畅、心胸郁闷、关节肿痛、乳癖、乳少等方面的治疗（中国药典委员会, 2020）。该属化学成分的结构类型主要包括间苯三酚类、黄酮类、二蒽酮类、三萜类、香豆素类、甾醇类等，并具有广泛的药理活性，如具有抗肿瘤作用的间苯三酚类化合物Hyperjapones A-B，D（Yang et al., 2016），具有显著抑制人乳腺癌细胞（MCF-7）和人肝癌细胞（HepG2）活性的氧杂蒽酮类化合物neobractatin（殷慧君，2020）。

纤枝金丝桃（Hypericum lagarocladum）为藤黄科金丝桃属植物，灌木，高0.4～1.5 m，主产地为湖南西部、四川西部、贵州南部、云南中部至西部，生于山谷山坡地、沟边、灌丛中，海拔1 500～2 700 m（Li & Norman, 2007）。目前，关于纤枝金丝桃的化学成分和活性研究报道甚少，已知从纤枝金丝桃其他植物中分离得到特异性分布于该属植物的骨架新颖、活性广泛的新多环多异戊烯基间苯三酚类成分（polycyclic polypropenylated acylphlorogluconins, PPAPs），及植物中的次生代谢产物具有一定种属特异性，为了阐明该植物的物质基础和获得PPAPs类活性化合物，我们对云南产的纤枝金丝桃地上部分进行了系统的化学成分研究，从该植物的80%乙醇浸提物中分离得到了15个化合物（图1），分别鉴定为attenuatumione G（1）、uralodin B（2）、chipericumin C3）、2.5-二羟基-1-甲氧基氧杂蒽酮（4）、1,7-二羟基氧杂蒽酮（5）、1,7-二羟基-4-甲氧基氧杂蒽酮（6）、槲皮素（7）、芹菜素-7-O-β-D-葡萄糖苷（8）、芹菜素-7-O-β-D-(6”-O-乙酰基)-葡萄糖苷（9）、木犀草素（10）、槲皮素（11）、白桦脂酸（12）、白桦脂酸甲酯（13）、白桦脂酸甲酯（14）、β-谷甾醇（15）。采用MTT法对首次从该植物中分离得到的化合物1-14进行体外抗乳腺癌活性测试，结果仅显示化合物3、6、13对2种乳腺癌细胞株MCF-7和MDA-MB-231有一定的抑制作用，它们的IC_{50}值分别为48.6～123.5 μg·mL^{-1}。

1 材料与方法

1.1 仪器和试剂

Finnigan MAT-95 型质谱仪，Q-TOF Micro LC-MS-MS 质谱仪，Bruker DRX-600 型核磁共振仪（Bruker，德国），Waters 制备型高效液相色谱仪（Waters，美国），COSMOSIL C18 250 mm × 10 mm，5 µm 半制备柱和 COSMOSIL SFF 250 mm × 10 mm，5 µm 半制备柱（COSMOSIL Ltd., 日本），HP-20 大孔吸附树脂（日本三菱公司），薄层层析硅胶板 GF_{254} 200～300，300～400 目（烟台江友硅胶开发有限公司），Sephadex LH-20 聚葡萄糖凝胶（Amersham Biosciences Ltd., 美国），色谱级甲醇和色谱级乙腈（TEDIA Ltd., 美国）。

1.2 植物材料

纤枝金丝桃（Hypericum lagarocladum）于2019年6月采集于云南省昆明市梁王山（102°52'45” E，24°43'57” N），由中国民族大学万定荣教授鉴定，标本（SC0869）保存于中国民族大学药学院植物标本库。

1.3 实验方法

1.3.1 提取和萃取 纤枝金丝桃干燥地上部分25.5 kg，粉碎后用80%的乙醇水重复提取4次（室温浸泡，每次20 L，每次3 d），合并提取液，减压蒸馏至无醇味，得浸膏1.76 kg。将浸膏分散于5倍体积热水，依次用石油醚、乙酸乙酯、正丁醇萃取，得到石油醚部位142 g、乙酸乙酯部位353 g、正丁醇部位693 g。合并石油醚部位和乙酸乙酯部分，用大孔树脂柱层
析，以水-乙醇梯度洗脱(20%-30%-40%-50%-60%-70%-80%-90%-95%，v/v)，硅胶薄层色谱检测，合并得11个组分A-K。

1.3.2 分离和纯化 组分C经凝胶柱层析，以甲醇(加入0.1%甲酸)洗脱，合并得9个组分(C1-C9)。组分C2经半制备高效液相色谱，分离得到化合物3(3.1 mg)(乙腈-水，v/v, 30∶70→39∶61, 22 min，流动相含有0.1%的甲酸)和化合物7(6.2 mg)(乙腈-水，v/v, 20∶80→45∶55, 18 min，流动相含有0.1%的甲酸)；C3组分经半制备高效液相色谱，分离得到化合物2(9.5 mg)(乙腈-水，v/v, 46∶54→50∶50, 24 min，流动相含有0.1%的甲酸)和化合物4(7.2 mg)(乙腈-水，体积比70∶30→65∶35, 16 min，流动相含有0.1%的甲酸)；C4组分经半制备高效液相色谱，分离得到化合物10(9.2 mg)(乙腈-水，v/v, 30∶70→70∶30, 18 min，流动相含有0.1%的甲酸)和化合物11(7.2 mg)(乙腈-水，v/v, 25∶75→60∶40, 18 min，流动相含有0.1%的甲酸)。组分D用凝胶柱层析，硅胶薄层色谱检测，得到10个组分D1-D10。组分D1经半制备高效液相色谱分离得到化合物1(10.4 mg)(乙腈-水，v/v, 60∶40→80∶20, 25 min，流动相含有0.1%的甲酸)，组分D2经高效液相色谱分离得到化合物8(6.2 mg)(乙腈-水，v/v, 10∶90→60∶40, 17 min，流动相含有0.1%的甲酸)，组分D3经高效液相色谱分离得到化合物5(4.6 mg)(乙腈-水，v/v, 15∶85→65∶35, 15 min，流动相含有0.1%的甲酸)。组分E经硅胶柱层析分离得到化合物9(3.1 mg)(乙腈-水，v/v, 10∶90→76∶24, 21 min，流动相含有0.1%的甲酸)。组分E1经凝胶柱层析，硅胶薄层色谱检测，分为E1,1-E1,3组分，E1,1经半制备高效液相色谱，得到化合物13(7.2 mg)(乙腈-水，v/v, 10∶90→70∶30, 26 min，流动相含有0.1%的甲酸)。组分G经硅胶柱层析石油醚-乙酸乙酯梯度洗脱(1∶0-0∶1, v/v)，硅胶薄层色谱检测，合并分为G1-G6组份。组分G1经凝胶柱层析，硅胶薄层色谱检测，合并为G3,1-G3,3组分，G3,1组分经半制备高效液相色谱得到化合物6(5.8 mg)(乙腈-水，v/v, 15∶85→55∶45, 19 min，流动相含有0.1%的甲酸)，组分G3,3经半制备高效液相色谱得到化合物9(3.1 mg)(乙腈-水，v/v, 10∶90→76∶24, 21 min，流动相含有0.1%的甲酸)。化合物12(10.7 mg)(乙腈-水，v/v, 10∶90→76∶24, 23 min，流动相含有0.1%的甲酸)。化合物13(7.2 mg)(乙腈-水，v/v, 10∶90→70∶30, 26 min，流动相含有0.1%的甲酸)。

1.3.3 抗乳腺癌活性测试 人乳腺癌细胞株MCF-7和MDA-MB-231均从美国模式培养物集存库购买(American Type Culture Collection, Rockville, MD, USA)，并培养在培养基比例为90%的DMEM培养基(高糖型)，10%的胎牛血清(FBS)和1%的双抗溶液(青霉素和链霉素)中，在恒温37°C、5%CO2的培养箱内培养。根据生长情况传代或更换培养基。取生长好的细胞株以每孔100 μL(密度为1 × 104~5 × 104)接种的96孔板中，于37°C、5%CO2的培养箱内培养。运用MTT法测试细胞活力和细胞毒性(徐婵等，2020)。化合物样品溶解在DMSO溶液中，配制浓度为50 mg·mL⁻¹的母液。用DMEM将母液稀释至待测样品的最终浓度为10、20、40、60、80、100 μg·mL⁻¹(二甲基亚砜浓度低于1%)。待细胞在96孔板长满后，吸弃培养液，每孔加入200 μL的不同浓度的待测化合物；对于每个浓度设置5孔，并设置试验样品的对照和未添加样品、细胞的空白对照。分别培养12、24和48 h后，吸弃培养液，向每个孔加入DMEM制备的MTT溶液100 μL(5 mg·mL⁻¹)，孵育0.5 h，所产生的蓝紫色甲腺结晶用150 μL的DMSO溶解，于562 nm下测定每孔OD值，生长抑制率= (1- (实验组OD值-空白组OD值)/(对照组OD值-空白组OD值))×100%。按文献计算半数抑制浓度(IC50)。
2 结果与分析

2.1 化合物结构鉴定

化合物 1 黄色油状。ESI-MS: *m/z* 587 [M+H]+, C_{35}H_{55}O_{7}；\(^1\)H-NMR (600 MHz, CDCl\(_3\)) \(\delta\): 5.06 (1H, t, \(J = 7.1\) Hz, H-27), 4.94 (1H, m, H-22), 4.57 (1H, dd, \(J = 10.9, 5.6\) Hz, H-32), 3.27 (1H, d, \(J = 9.7\) Hz, H-17), 3.15 (1H, dd, \(J = 14.0, 6.8\) Hz, H-26\(\alpha\)), 3.04 (1H, dd, \(J = 14.0, 6.8\) Hz, H-26\(\beta\)), 2.67 (1H, dd, \(J = 12.8, 10.5\) Hz, H-31\(\alpha\)), 2.15 (1H, m, H-21\(\alpha\)), 2.09 (1H, d, \(J = 12.3\) Hz, H-15\(\alpha\)), 2.05 (1H, dd, \(J = 13.2, 4.3\) Hz, H-5\(\alpha\)), 1.96 (1H, t, \(J = 6.4\) Hz, H-11), 1.93 (1H, m, H-15\(\beta\)), 1.78 (2H, dd, \(J = 12.9, 5.3\) Hz, H-21\(\beta\), 31\(\beta\)), 1.71 (6H, s, H-24, 30), 1.67 (1H, m, H-4), 1.66 (3H, s, H-29), 1.61 (1H, m, H-16\(\alpha\)), 1.57 (3H, s, H-25), 1.51 (2H, t, \(J = 13.4\) Hz, H-5\(\beta\), 16\(\beta\)), 1.38 (3H, s, H-34), 1.23 (3H, s, H-35), 1.18 (3H, s, H-19), 1.14 (3H, s, H-20), 1.09 (3H, d, \(J = 6.5\) Hz, H-13), 1.07 (3H, s, H-14), 1.01 (3H, d, \(J = 6.5\) Hz, H-12)。\(^1^3\)C-NMR (150 MHz, CDCl\(_3\)) \(\delta\): 209.7 (C-10), 204.4 (C-1), 193.8 (C-9), 174.0 (C-7), 133.9 (C-23), 132.8 (C-28), 122.1 (C-22), 121.1 (C-27), 117.0 (C-8), 90.5 (C-32), 82.9 (C-2), 78.7 (C-17), 73.1 (C-18), 71.0 (C-33), 59.7 (C-6), 48.4 (C-3),

图1 化合物 1-15 的结构式

Fig. 1 Structures of compounds 1–15
化合物1的13C-NMR和DEPT谱中共显示了35个碳信号，通过特征碳信号δ 209.7 (C-10), 204.4 (C-1), 193.8 (C-9), 174.0 (C-7), 117.0 (C-8), 82.9 (C-2), 59.7 (C-6), 48.4 (C-3), 41.9 (C-4), 37.9 (C-5)，可以推断该化合物是[3.3.1]型多环多异戊烯基间苯三酚衍生物。结合1H-NMR，显示化合物1具有一个异丁酰基，两个异戊烯基，一个2-甲基-2,3-二氢基丁基和一个四氢呋喃环片段，其波谱数据与Zhou等(2016)的报道基本一致，故鉴定化合物1为attenuatumione G。

化合物2黄色油状。ESI-MS: m/z 587 [M+H]$^+$, $C_{38}H_{50}O_5$; 1H-NMR (600 MHz, CDCl$_3$) δ; 7.51 (2H, d, $J = 7.5$ Hz, H-12, 16), 7.38 (1H, t, $J = 7.5$ Hz, H-14), 7.25 (2H, t, $J = 7.5$ Hz, H-13, 15), 5.06 (1H, t, $J = 7.2$ Hz, H-35), 5.02 (2H, m, H-20, 25), 4.87 (1H, dd, $J = 10.3$, 7.6 Hz, H-30), 3.02 (1H, dd, $J = 15.0$, 10.4 Hz, H-29a), 2.98 (1H, dd, $J = 15.0$, 7.7 Hz, H-29b), 2.54 (2H, m, H-34), 2.18 (2H, m, H-19β), 2.07 (1H, m, H-5β), 2.05 (1H, m, H-18β), 2.02 (1H, m, H-19α), 2.00 (1H, m, H-4), 1.96 (1H, m, H-24α), 1.82 (1H, m, H-18α), 1.74 (3H, s, H-28), 1.68 (6H, s, H-37, 38), 1.67 (1H, m, H-5a), 1.65 (3H, s, H-23), 1.62 (3H, s, H-22), 1.58 (3H, s, H-27), 1.34 (3H, s, H-32), 1.22 (3H, s, H-33), 1.12 (3H, s, H-17), 13C-NMR (150 MHz, CDCl$_3$) δ: 206.8 (C-1), 193.6 (C-10), 188.2 (C-9), 175.8 (C-7), 136.9 (C-11), 134.9 (C-36), 133.8 (C-26), 132.2 (C-14), 131.4 (C-21), 128.3 (C-12), 128.3 (C-16), 128.2 (C-13), 128.1 (C-15), 124.5 (C-20), 122.6 (C-25), 120.5 (C-35), 118.5 (C-8), 93.3 (C-30), 79.8 (C-2), 71.7 (C-31), 55.5 (C-6), 49.9 (C-3), 42.8 (C-4), 39.4 (C-5), 36.7 (C-18), 29.2 (C-34), 27.7 (C-24), 27.3 (C-29), 26.2 (C-23), 26.1 (C-28), 26.1 (C-33), 25.9 (C-38), 25.2 (C-19), 23.2 (C-32), 18.3 (C-22), 18.2 (C-27), 17.9 (C-37), 14.2 (C-17)。

化合物3黄色油状。ESI-MS: m/z 445 [M-H]$^-$, $C_{26}H_{32}O_6$; 1H-NMR (600 MHz, CDCl$_3$) δ; 4.94 (1H, t, $J = 7.8$ Hz, H-18), 3.42 (1H, dt, $J = 6.8$ Hz, H-24), 2.74 (1H, dd, $J = 14.0$, 8.9 Hz, H-17a), 2.62 (1H, dd, $J = 14.0$, 6.6 Hz, H-17b), 2.22 (1H, d, $J = 13.6$ Hz, H-14b), 1.90 (1H, m, H-7a), 1.88 (1H, m, H-7b), 1.77 (1H, m, H-12), 1.76 (1H, m, H-11a), 1.75 (2H, m, H-10), 1.62 (3H, s, H-21), 1.58 (3H, s, H-20), 1.55 (1H, m, H-8), 1.41 (1H, d, $J = 13.6$ Hz, H-14a), 1.38 (1H, m, H-11b), 1.36 (3H, s, H-16), 1.33 (3H, s, H-22), 1.25 (3H, d, $J = 6.7$ Hz, H-26), 1.16 (3H, d, $J = 6.7$ Hz, H-25), 1.04 (3H, s, H-15), 13C-NMR (150 MHz, CDCl$_3$) δ: 206.9 (C-5), 205.3 (C-23), 200.5 (C-1), 197.7 (C-3), 136.2 (C-19), 118.9 (C-18), 110.6 (C-2), 79.3 (C-9), 73.3 (C-13), 65.4 (C-4), 57.4 (C-6), 52.1 (C-12), 48.9 (C-14), 48.2 (C-8), 40.0 (C-10), 35.4 (C-17), 34.1 (C-24), 26.9 (C-16), 26.7 (C-7), 26.2 (C-22), 26.0 (C-21), 21.8 (C-11), 21.2 (C-15), 20.9 (C-26), 18.3 (C-25), 18.0 (C-20)。

化合物4黄色无定形粉末。ESI-MS: m/z 259 [M+H]$^+$, $C_{14}H_{20}O_5$; 1H-NMR (600 MHz, CD$_3$OD) δ; 7.59 (1H, d, $J = 7.5$ Hz, H-8), 7.46 (1H, d, $J = 7.8$ Hz, H-3), 7.34 (1H, d, $J = 7.8$ Hz, H-4),
7.33 (1H, d, J = 7.5 Hz, H-6), 7.25 (1H, t, J = 7.5, 1.7 Hz, H-7), 3.90 (3H, s, 1-OCH3). 13C-NMR (150 MHz, CD2OD) δ: 178.6 (C-9), 151.8 (C-4a), 148.0 (C-2), 147.5 (C-5), 146.5 (C-1), 145.3 (C-4b), 125.3 (C-3), 124.6 (C-7), 123.9 (C-8a), 120.7 (C-6), 117.1 (C-8b), 117.0 (C-8), 115.2 (C-4), 62.1 (1-OCH3)。其波谱数据与程玉安等(2008)的报道基本一致，故鉴定化合物4为2,5-二羟基-1-甲氧基氧杂蒽酮。

化合物5黄色无定形粉末。ESI-MS: m/z 229 [M+H]+, C19H19O4; 1H-NMR (600 MHz, CDCl3) δ: 7.43 (1H, t, J = 7.3 Hz, H-3), 7.32 (1H, d, J = 3.0 Hz, H-8), 7.25 (1H, d, J = 9.0 Hz, H-5), 7.17 (1H, dd, J = 9.0, 3.0 Hz, H-6), 6.76 (1H, d, J = 8.4 Hz, H-4), 6.44 (1H, d, J = 8.4 Hz, H-2)。13C-NMR (150 MHz, CDCl3) δ: 182.2 (C-9), 161.9 (C-1), 156.5 (C-4a), 152.3 (C-7), 151.0 (C-4b), 136.9 (C-3), 124.9 (C-6), 121.2 (C-8a), 119.6 (C-5), 110.2 (C-2), 108.8 (C-8b), 108.6 (C-8a), 107.2 (C-4)。其波谱数据与Wong等(2018)的报道基本一致，故鉴定化合物5为1,7-二羟基-4-甲氧基氧杂蒽酮。

化合物6黄色无定形粉末。ESI-MS: m/z 259 [M+H]+, C19H19O4; 1H-NMR (600MHz, CD2OD) δ: 7.52 (1H, d, J = 3.1 Hz, H-8), 7.49 (1H, d, J = 9.1 Hz, H-6), 7.36 (1H, J = 8.9 Hz, H-2), 7.32 (1H, d, J = 3.1 Hz, H-5), 6.66 (1H, d, J = 8.9 Hz, H-3), 3.93 (3H, s, 4-OCH3). 13C-NMR (150 MHz, CD2OD) δ: 183.5 (C-9), 155.7 (C-7), 155.5 (C-1), 151.4 (C-4b), 147.4 (C-4a), 141.6 (C-4), 126.4 (C-6), 122.2 (C-20), 121.4 (C-3), 120.5 (C-5), 109.9 (C-8b), 109.1 (C-8), 109.0 (C-2), 57.8 (4-OCH3)。其波谱数据与Dao等(2012)的报道基本一致，故鉴定化合物6为1,7-二羟基-4-甲氧基氧杂蒽酮。

化合物7黄色无定形粉末。ESI-MS: m/z 449 [M+H]+, C21H20O11; 1H-NMR (600 MHz, CDCl3) δ: 7.30 (1H, d, J = 1.9 Hz, H-2), 7.25 (1H, dd, J = 8.6, 1.9 Hz, H-6), 6.89 (1H, d, J = 8.6 Hz, H-5), 6.40 (1H, d, J = 2.3 Hz, H-8), 6.19 (1H, d, J = 2.3 Hz, H-6), 5.25 (1H, d, J = 1.8 Hz, H-1”), 3.96 (1H, m, H-2”), 3.49 (1H, m, H-3”), 3.29 (1H, m, H-5”), 3.12 (1H, m, H-4”), 0.79 (3H, d, J = 5.9 Hz, 3”-CH3)。13C-NMR (150 MHz, CDCl3) δ: 180.0 (C-1), 166.0 (C-7), 163.1 (C-5), 159.4 (C-9), 158.8 (C-2), 149.9 (C-4”), 146.4 (C-3), 136.4 (C-3), 123.1 (C-6), 122.8 (C-1”), 117.0 (C-2), 116.0 (C-5), 105.8 (C-10), 103.1 (C-1”), 99.5 (C-6), 94.6 (C-8), 73.3 (C-4”), 72.1 (C-2”), 72.1 (C-3”), 71.9 (C-5”), 17.7 (C-6”)。其波谱数据与Zhong等(1997)的报道基本一致，故鉴定化合物7为骸皮苷。

化合物8黄色无定形粉末。ESI-MS: m/z 417 [M+H]+, C21H20O10; 1H-NMR (600 MHz, CDCl3) δ: 8.07 (2H, d, J = 8.8 Hz, H-2”, 6”), 7.13 (2H, d, J = 8.8 Hz, H-3”, 5”), 6.69 (1H, s, H-3), 6.86 (1H, d, J = 2.2 Hz, H-8), 6.46 (1H, d, J = 2.2 Hz, H-6), 5.08 (1H, d, J = 7.4 Hz, H-1”).13C-NMR (150 MHz, CDCl3) δ: 182.0 (C-4”), 163.8 (C-2), 163.0 (C-7), 162.4 (C-5), 161.4 (C-4”), 156.9 (C-9), 128.4 (C-2”), 120.7 (C-1”), 114.6(C-3”, 5”), 105.4 (C-10), 105.4 (C-1”), 103.8 (C-3), 99.9 (C-2”), 99.5 (C-6), 94.9 (C-8), 77.2 (C-4”), 76.4 (C-6”), 73.1 (C-3”), 69.5 (C-5”)。其波谱数据与庄鹏宇等(2009)的报道基本一致，故鉴定化合物8为芹菜素-7-O-β-D-葡萄糖苷。

化合物9黄色无定形粉末。ESI-MS: m/z 473 [M-H], C23H22O11; 1H-NMR (600 MHz, CDCl3) δ: 7.85 (2H, d, J = 8.4 Hz, H-2”, 6”), 6.89 (2H, d, J = 8.4 Hz, H-3”, 5”), 6.72 (1H, d, J = 1.5 Hz, H-8), 6.61 (1H, s, H-3), 6.45 (1H, brs, H-6), 5.04 (1H, d, J = 7.2 Hz, H-1”), 4.47 (1H, dd, J = 11.3, 2.4 Hz, H-6b”), 4.23 (1H, dd, J = 11.3, 4.6 Hz, H-6a”), 3.77 (1H, s, H-5”), 3.63 (1H, m, H-2”), 3.56 (1H, m, H-3”), 3.36 (1H, dd, J = 9.2, 9.2 Hz, H-4”), 2.09 (3H, s, CO-CH3-6)。13C-NMR (150 MHz, CDCl3) δ: 182.3 (C-4”), 171.6 (C-1”), 165.4 (C-7), 163.2 (C-2), 161.6 (C-5), 161.5 (C-4”), 157.5 (C-9), 128.2 (C-2”, 6”), 121.6 (C-1”), 115.7 (C-3”, 5”), 105.7 (C-10), 102.8 (C-3), 100.1 (C-1”), 99.7 (C-2”), 94.8 (C-8), 76.3 (C-3”), 74.2 (C-5”), 73.3 (C-2”), 70.2 (C-7”), 63.4 (C-6”), 19.4 (C-2”)。其波谱数据与程鑫等(2014)的报道基本一致，故鉴定化合物9为芹菜素-7-O-β-D-6”-O-乙酰
基)-葡萄糖苷。

化合物 10 黄色无定形粉末。ESI-MS: m/z 287 [M+H]^+, C_{14}H_{10}O_5; ^1H-NMR (600 MHz, CD_2OD) δ: 7.38 (1H, d, J = 2.2 Hz, H-2'), 7.37 (1H, dd, J = 8.5, 2.2 Hz, H-6'), 6.88 (1H, d, J = 8.5 Hz, H-5'), 6.53 (1H, s, H-3), 6.42 (1H, d, J = 2.1 Hz, H-8), 6.19 (1H, d, J = 2.1 Hz, H-6).

^13C-NMR (150 MHz, CD_2OD) δ: 183.7 (C-4), 166.4 (C-7), 166.1 (C-2), 163.2 (C-5), 159.3 (C-9), 151.0 (C-4'), 147.1 (C-3'), 123.7 (C-1'), 120.3 (C-6'), 116.8 (C-5'), 114.1 (C-2'). 105.3 (C-10), 103.9 (C-3), 100.1 (C-6), 95.0 (C-8). 其波谱数据与和蕾等(2008)的报道基本一致，故鉴定化合物 10 为木犀草素。

化合物 11 黄色无定形粉末。ESI-MS: m/z 303 [M+H]^+, C_{18}H_{10}O_5; ^1H-NMR (600 MHz, CD_2OD) δ: 7.73 (1H, d, J = 2.2 Hz, H-2'), 7.62 (1H, dd, J = 8.5, 2.2 Hz, H-6'), 6.87 (1H, d, J = 8.5 Hz, H-5'), 6.38 (1H, d, J = 2.1 Hz, H-8), 6.17 (1H, d, J = 2.1 Hz, H-6).

^13C-NMR (150 MHz, CD_2OD) δ: 177.3 (C-4), 165.6 (C-7), 162.5 (C-9), 158.2 (C-5), 148.8 (C-4'), 148.0 (C-2), 146.2 (C-3'), 137.3 (C-3), 124.1 (C-1'), 121.7 (C-6'), 116.2 (C-5'), 115.9 (C-2'), 104.5 (C-10), 99.2 (C-6), 94.4 (C-8). 其波谱数据与王晓阳等(2020)的报道基本一致，故鉴定化合物 11 为槲皮素。

化合物 12 白色无定形粉末。ESI-MS: m/z 457 [M+H]^+, C_{20}H_{11}O_5; ^1H-NMR (600 MHz, CDCl_3) δ: 4.69 (1H, s, H-29a), 4.57 (1H, s, H-29b), 3.33 (1H, m, H-3), 1.68 (3H, s, H-23), 0.99 (3H, s, H-24), 0.95 (3H, s, H-25), 0.93 (3H, s, H-26), 0.84 (3H, s, H-27), 0.74 (3H, s, H-30).

^13C-NMR (150 MHz, CDCl_3) δ: 180.1 (C-28), 152.0 (C-20), 110.2 (C-29), 79.7 (C-3), 57.5 (C-17), 56.9 (C-5), 52.0 (C-9), 50.4 (C-18), 48.1 (C-19), 43.6 (C-14), 41.9 (C-8), 40.1 (C-1), 39.7 (C-4), 38.3 (C-13), 38.1 (C-10), 37.9 (C-22), 35.6 (C-7), 33.3 (C-16), 31.7 (C-15), 30.8 (C-21), 28.6 (C-23), 28.0 (C-2), 26.9 (C-12), 22.1 (C-11), 19.5 (C-6), 19.4 (C-30), 16.7 (C-26), 16.6 (C-25), 16.1 (C-24), 15.1 (C-27). 其波谱数据与王军明等(2021)的报道基本一致，故鉴定化合物 12 为白桦脂酸。

化合物 13 白色无定形粉末。ESI-MS: m/z 471 [M+H]^+, C_{14}H_{11}O_5; ^1H-NMR (600 MHz, CDCl_3) δ: 4.73 (1H, s, H-29a), 4.60 (1H, s, H-29b), 3.61 (3H, s, CO_2Me), 3.15 (1H, m, H-3), 2.88 (1H, m, H-19), 1.66 (3H, s, H-30), 0.97 (3H, s, H-24), 0.96 (3H, s, H-25), 0.93 (3H, s, H-26), 0.81 (3H, s, H-27), 0.75 (3H, s, H-23). ^13C-NMR (150 MHz, CDCl_3) δ: 180.8 (C-28), 150.6 (C-20), 109.9 (C-29), 79.2 (C-3), 56.4 (C-17), 55.5 (C-5), 51.1 (CO_2Me), 50.6 (C-9), 49.4 (C-19), 47.0 (C-18), 42.3 (C-14), 40.8 (C-8), 39.0 (C-4), 38.8 (C-1), 38.5 (C-13), 37.3 (C-22), 37.2 (C-10), 34.4 (C-7), 32.3 (C-16), 30.7 (C-15), 29.8 (C-21), 28.1 (C-23), 27.5 (C-2), 25.6 (C-12), 21.0 (C-11), 19.5 (C-30), 18.4 (C-6), 16.3 (C-25), 16.2 (C-26), 15.5 (C-24), 14.8 (C-27). 其波谱数据与Kojima等(1987)的报道基本一致，故鉴定化合物 13 为白桦脂酸甲酯。

化合物 14 白色无定形粉末。ESI-MS: m/z 453 [M-H]⁻, C_{13}H_{15}O_5; ^1H-NMR (600 MHz, CD_3OD) δ: 4.75 (1H, s, H-29a), 4.59 (1H, s, H-29b), 2.99 (1H, m, H-19), 2.50 (1H, m, H-2β), 2.39 (1H, m, H-2α), 2.30 (1H, m, H-16β), 2.20 (1H, m, H-13), 2.00 (2H, m, H-15β, 22β), 1.90 (1H, m, H-1β'), 1.69 (1H, m, H-12β'), 1.65 (3H, s, H-30), 1.60 (1H, m, H-18), 1.55 (1H, m, H-21β'), 1.50 (2H, m, H-6), 1.45 (1H, m, H-22α), 1.43 (4H, m, H-7, 11β, 16α), 1.40 (1H, m, H-15α), 1.39 (2H, m, H-1α), 1.36 (1H, m, H-5), 1.36 (1H, m, H-11α), 1.21 (1H, m, H-21α), 1.07 (3H, s, H-23), 1.04 (1H, m, H-12α), 0.99 (3H, s, H-24), 0.97 (3H, s, H-27), 0.95 (3H, s, H-26), 0.91 (3H, s, H-25). ^13C-NMR (150 MHz, CD_3OD) δ: 218.7 (C-3), 182.3 (C-28), 150.4 (C-20), 110.0 (C-29), 56.4 (C-17), 54.9 (C-5), 50.0 (C-9), 49.1 (C-18), 47.6 (C-4), 46.9 (C-19), 42.5 (C-14), 40.8 (C-8), 40.0 (C-1), 39.1 (C-13), 37.5 (C-22), 36.9 (C-10), 34.2 (C-2), 34.0 (C-7), 32.1 (C-16), 30.5 (C-15), 30.0 (C-21), 26.8 (C-23), 25.7 (C-12), 21.6 (C-11), 21.2 (C-24), 20.0 (C-6), 19.6 (C-30), 16.4 (C-25), 16.0 (C-26), 14.8 (C-27). 其波谱数据与Barthel等(2008)的报道基本一致，故鉴定化合物
物14为白桦脂酮酸。

化合物15白色无定形粉末。EI-MS: m/z 397 [M+H]+, C_{29}H_{50}O; TLC多个体系展开与标准品Rf值均一致，故鉴定化合物15为β-谷甾醇。

2.2 细胞毒活性结果

采用MTT法测试从纤枝金丝桃乙醇提取物中分离到的化合物1-14对2种乳腺癌细胞株MCF-7和MDA-MB-231的细胞毒活性，活性测试结果显示，测试的14个化合物中，仅有化合物3、6、13对MCF-7和MDA-MB-231两个细胞株显示一定的抗癌活性，它们对MCF-7细胞株的IC_{50}值分别为123.5±5.8、52.7±2.7、99.4±5.3μg·mL^{-1}，对MDA-MB-231细胞株的IC_{50}值分别为112.8±6.2、48.6±1.9、105.1±7.0μg·mL^{-1}，其他化合物在测试浓度达到200μg·mL^{-1}仍然不显示活性。

3 讨论与结论

金丝桃属植物中特征性成分天然多环多异戊烯基间苯三酚类成分(PPAPs)具有复杂独特的结构，其结构类型分为[3.3.1]型、[3.2.1]型、[5.3.1]型、金刚烷型、类金刚烷型、螺环型及其他类型。本论文从云南产植物纤枝金丝桃中分离到15个单体化合物，结构类型包括有多环多异戊烯基间苯三酚类、黄酮类、三萜类、甾体类，其中3个为多环多异戊烯基间苯三酚衍生物，结构类型为[3.3.1]型和螺环型。该论文较好地充实了金丝桃属植物和天然产物的研究内容，扩展了对纤枝金丝桃植物的物质基础的认识。

PPAPs不仅具有复杂独特的结构，且具有抗肿瘤、抗抑郁、抗菌、抗炎等广泛的生物活性。我们对首次分离化合物进行了体外抗乳腺癌活性测试，结果显示没有发现显著抑制两种乳腺癌细胞株MCF-7和MDA-MB-231的活性化合物。PPAPs的另一个主要作用是抗抑郁活性，研究表明贯叶金丝桃素(hyperforin)是多种神经递质的非竞争性重吸收抑制剂，其是通过竞争转运蛋白的结合位点选择性地抑制神经递质的重吸收而产生抗抑郁作用(Mü ller et al., 1998)。基于此，课题组将进一步对所得PPAPs类化合物进行抗抑郁活性筛选研究，期望获得具有抗抑郁作用化合物。综上所述，本研究为深入探讨纤枝金丝桃的化学成分和药理作用奠定了基础，也为未来合理开发利用该植物提供了一定的科学依据。

参考文献:

