您当前的位置: > 详细浏览

Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change

请选择邀稿期刊:
摘要: Gross primary productivity (GPP) of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought. Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks, aiding efforts to mitigate the detrimental effects of climate change. In this study, we utilized the precipitation and temperature data from the Climatic Research Unit, the standardized precipitation evapotranspiration index (SPEI), the standardized precipitation index (SPI), and the simulated vegetation GPP using the eddy covariance-light use efficiency (EC-LUE) model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982–2018. The main findings indicated that vegetation GPP decreased in 50.53% of the plateau, mainly in its northern and northeastern parts, while it increased in the remaining 49.47% area. Specifically, meadow steppe (78.92%) and deciduous forest (79.46%) witnessed a significant decrease in vegetation GPP, while alpine steppe (75.08%), cropland (76.27%), and sandy vegetation (87.88%) recovered well. Warming aridification areas accounted for 71.39% of the affected areas, while 28.53% of the areas underwent severe aridification, mainly located in the south and central regions. Notably, the warming aridification areas of desert steppe (92.68%) and sandy vegetation (90.24%) were significant. Climate warming was found to amplify the sensitivity of coniferous forest, deciduous forest, meadow steppe, and alpine steppe GPP to drought. Additionally, the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased. The cumulative effect of drought on vegetation GPP persisted for 3.00–8.00 months. The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.
 

版本历史

[V1] 2024-01-12 20:02:47 ChinaXiv:202401.00188V1 下载全文
点击下载全文
预览
许可声明
metrics指标
  •  点击量383
  •  下载量11
评论
分享